توصيف مرتسم تغاير الشحنة لضد وحيد النسيلة سواء عارٍ أو مرتبط مع دواء بطريقة الكروماتوغرافيا البؤرية المبادلة للأيونات السالبة

توصيف مرتسم تغاير الشحنة لضد وحيد النسيلة سواء عارٍ أو مرتبط مع دواء بطريقة الكروماتوغرافيا البؤرية المبادلة للأيونات السالبة

2023-01-01 | المجلد السابع العدد الأول - المجلد السابع | مقالات بحثية
آيات عبود | ناصر ثلاج

الملخص

تعد الأضداد وحيدة النسيلة (mAb) العارية والمرتبطة مع دواء (ADC) فئة مهمة جدًا من الأدوية البيولوجية. يعد تقييم مرتسم تغاير الشحنات احدى الأدوات المستخدمة لضمان جودة هذه الفئة العلاجية. كان الهدف الرئيسي من الدراسة الحالية هو تقييم تأثير تغيير بعض شروط الكروماتوغرافيا البؤرية المعتمدة على استخدام أعمدة مبادلة للأيونات السالبة على مرتسم الشحنات لضد وحيد النسيلة عارٍ أو مرتبط مع دواء. شملت الشروط الكروماتوغرافية التي تم التحقق منها: حجوم ما قبل الشطف المدروج، درجة حرارة العمود، pH المحاليل الدارئة البادئة والمستخدمة للشطف، وإضافة محاليل أمفوليت حاملة ذات المجال 8-10.5. أظهرت نتائج الكروماتوغرافيا البؤرية أن mAb-1 مكون من نظيرين لهما قيمpI  مساوية 8.1 و8.2. عند ربط mAb-1 الى دواء سام للخلايا أظهرت النتائج الكروماتوغرافية  قمم اكثر للضد المرتبط موافقة لقيم pI من 7.3 إلى 8.5. تم اختبار انتقائية الطريقة عن طريق تحليل ضد آخر mAb-2. أظهر mAb-2 تجانساً وقلوية اكبر من mAb-1  مع قمة رئيسية موافقة لقيم .8.7 pI طبقت الشروط الكروماتوغرافية البؤرية الأمثل لمراقبة ثبات الضد المرتبط المدروس الخاضع لشروط ثبات قاسية.  اثبتت الطريقة الكروماتوغرافية البؤرية المطورة امكانية استخدامها لإظهار تغيرات في مرتسم مغايرات الشحنة سواء لضد عارٍ او مرتبط مع دواء.


كلمات مفتاحية : الأجسام المضادة، الأضداد المرتبطة، نظائر مختلفة الشحنات، نقطة التعادل الكهربائي، الكروماتوغرافيا البؤرية.
المراجع :
  1. Baah S, Laws M, Rahman KM, Antibody-Drug Conjugates-A Tutorial Review, Molecules, 26, 2943, 2021.
  2. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J, Antibody–Drug Conjugates: A Comprehensive Review, Molecular Cancer Research, 18, 3–19, 2020.
  3. Singh S, Kumar NK, Dwiwedi P, Charan J, Kaur R, Sidhu P, Chugh VK, Monoclonal Antibodies: A Review, Current Clinical Pharmacology, 13, 85-99, 2018.
  4. Sievers EL, Senter PD, Antibody-drug conjugates in cancer therapy, Annual Review Medicine, 64, 15-22, 2013.
  5. Hafeez U, Parakh S, Gan HK, Scott AM, Antibody-Drug Conjugates for Cancer Therapy, Molecules, 25, 4764, 2020.
  6. Dean AQ, Luo S, Twomey JD, Zhang B, Targeting cancer with antibody-drug conjugates: Promises and challenges, mAbs, 13, e1951427 (23 pages), 2021.
  7. Drago JZ, Modi S, Chandarlapaty S, Unlocking the potential of antibody–drug conjugates for cancer therapy, National Review of Clinical Oncology, 18, 327–344, 2021.
  8. Criscitiello C, Morganti S, Curigliano G, Antibody–drug conjugates in solid tumors: a look into novel targets, Journal of Hematology and Oncology, 14, 20, 2021.
  9. Wang N, Mei Q, Wang Z, Zhao L, Zhang D, Liao D, Zuo J, Xie H, Jia Y, Kong F, Research Progress of Antibody–Drug Conjugate Therapy for Advanced Gastric Cancer, Frontiers in Oncology, 12, 889017, 2022.
  10. Fu Z, Li S, Han S, Shi C, Zhan Y, Antibody drug conjugate: the “biological missile” for targeted cancer therapy, Signal Transduction and Target Therapy, 7, 93, 2022.
  11. Cauchon NS, Oghamian S, Hassanpour S, Abernathy M, Innovation in Chemistry, Manufacturing, and Controls—A Regulatory Perspective From Industry, Journal of Pharmaceutical Sciences, 108, 2207-2237, 2019.
  12. Torkashvand F, Vaziri B, Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components, Iranian Biomedical Journal, 21, 131-41, 2017.
  13. Wagh A, Song H, Zeng M, Tao L, Das TK, Challenges and new frontiers in analytical characterization of antibody-drug conjugates, MAbs, 10, 222-243, 2018.
  14. Wakankar A, Chen Y, Gokarn Y, Jacobson FS, Analytical methods for physicochemical characterization of antibody drug conjugates, MAbs, 3, 161-172, 2011.
  15. Zhu X, Huo S, Xue C, An B, Qu J, Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates, Journal of Pharmaceutical Analysis, 10, 209-220, 2020.
  16. Yan Y, Liu AP, Wang S, Daly TJ, Li N, Ultrasensitive Characterization of Charge Heterogeneity of Therapeutic Monoclonal Antibodies Using Strong Cation Exchange Chromatography Coupled to Native Mass Spectrometry, Analytical Chemistry, 90, 13013–13020, 2018.
  17. Füssl F, Trappe A, Carillo S, Jakes C, Bones J, Comparative Elucidation of Cetuximab Heterogeneity on the Intact Protein Level by Cation Exchange Chromatography and Capillary Electrophoresis Coupled to Mass Spectrometry, Analytical Chemistry, 92, 5431-5438, 2020.
  18. Zhang Z, Zhou S, Han L, Zhang Q, Pritts WA, Impact of linker-drug on ion exchange chromatography separation of antibody-drug conjugates, MAbs, 11, 1113-1122, 2019.
  19. Kang X, Kutzko JP, Hayes ML, Frey DD, Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems, Journal of Chromatogry A, 1283, 89-97, 2013.
  20. Rozhkova A, Quantitative analysis of monoclonal antibodies by cation-exchange chromatofocusing, Journal of chromatography A, 1216, 5989-5994, 2009.
  21. Kubota K, Kobayashi N, Yabuta M, Ohara M, Naito T, Kubo T, Otsuka K, Validation of Capillary Zone Electrophoretic Method for Evaluating Monoclonal Antibodies and Antibody-Drug Conjugates, Chromatography, 37, 117- 124, 2016.
  22. Kumar R, Guttman A, Rathore AS, Applications of capillary electrophoresis for biopharmaceutical product characterization, Electrophoresis, 43, 143-166, 2022.
  23. Dadouch M, Ladner Y, Perrin C, Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection, Separations, 8, 4, 2021.
  24. Li CM, William Hutchens T, Chromatofocusing. Methods in Molecular Biology (Clifton, N.J.), 11, 237-248, 1992.
  25. Talebi M, Nordborg A, Gaspar A, Lacher NA, Wang Q, He XZ, Haddad PR, Hilder EF, Charge heterogeneity profiling of monoclonal antibodies using low ionic strength ion-exchange chromatography and well-controlled pH gradients on monolithic columns, Journal of Chromatography A, 1317, 148-154, 2013.
  26. Joyce L, Alexandru L, Determination of Charge Heterogeneity and Level of Unconjugated Antibody by Imaged cIEF, Methods in molecular biology (Clifton, N.J.), 1045, 295-302, 2013.
  27. Kang X, Frey DD, Chromatofocusing of peptides and proteins using linear pH gradients formed on strong ion-exchange adsorbents, Biotechnology and Bioenginering, 87, 376-87, 2004.
  28. Nordborg A, Zhang B, He XZ, Hilder EF, Haddad PR, Characterization of monoclonal antibodies using polymeric cation exchange monoliths in combination with salt and pH gradients, Journal of Separation Science, 32, 2668-2673, 2009.
  29. Zhang L, Patapoff T, Farnan D, Zhang B, Improving pH gradient cation-exchange chromatography of monoclonal antibodies by controlling ionic strength, Journal of Chromatography A, 1272, 56-64, 2013.
  30. Goyon A, Excoffier M, Janin-Bussat MC, et al, Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies, Journal of Chromatogrraphy B, analytical  Technology in the Biomedical and Life Science, 1065-1066, 119-128, 2017.
  31. Zinzani PL, Minotti G, Anti-CD19 monoclonal antibodies for the treatment of relapsed or refractory B-cell malignancies: a narrative review with focus on diffuse large B-cell lymphoma, Journal of cancer research and clinical oncology, 148, 177–190, 2022.
  32. Sluyterman LAAE, Elgersma O, Chromatofocusing: Isoeletric focusing on ion-exchange columns. I. General principles, Journal of Chromatogry A, 150, 17-30, 1978.
  33. Sluyterman LAAE, Wijdenes J, Chromatofocusing: Isoeletric focusing on ion-exchange columns. II. Experimental verification, Journal of Chromatogry A, 150, 31-44, 1978.
  34. Chari RVJ, Targeted cancer therapy: conferring specificity to cytotoxic drugs, Accounts of Chemical Research, 41, 98–107, 2008.
  35. Tsuchikama K, An Z, Antibody-drug conjugates: recent advances in conjugation and linker chemistries, Protein & cell, 9, 33–46, 2018.
  36. Boylan NJ, Zhou W, Proos RJ, Tolbert TJ, Wolfe JL, Laurence JS, Conjugation site heterogeneity causes variable electrostatic properties in Fc conjugates, Bioconjugate Chemistry, 24, 1008-1016, 2013.
  37. Spanov B, Govorukhina N, van de Merbel Nico C, Bischoff R, Analytical tools for the characterization of deamidation in monoclonal antibodies, Journal of Chromatography Open, 2, 100025, 2022.
  38. Lu X, Nobrega RP, Lynaugh H, Jain T, Barlow K, Boland T, Sivasubramanian A, Vásquez M, Xu Y, Deamidation and isomerization liability analysis of 131 clinical-stage antibodies, MAbs, 11, 11-13, 2018.
  39. Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, Shire SJ, Bjork N, Totpal K, Chen AB, Identification of multiple sources of charge heterogeneity in a recombinant antibody, Journal of Chromatography B, Biomedical Sciences and Applications, 752, 233–245,
  40. Liu AP, Yan Y, Wang S, Li N, Coupling anion exchange chromatography with native mass spectrometry for charge heterogeneity characterization of monoclonal antibodies, Analytical Chemistry, 94, 6355-636, 2022.
  41. Schmid I, Bonnington L, Gerl M et al., Assessment of susceptible chemical modification sites of trastuzumab and endogenous human immunoglobulins at physiological conditions, Communications Biology, 1, 28, 2018.