تعيين مستويات الإنزيم المقوض للأنسولين المصلية لدى مرضى سوريين مصابين بالمتلازمة الاستقلابية بدون السكري من النمط الثاني

تعيين مستويات الإنزيم المقوض للأنسولين المصلية لدى مرضى سوريين مصابين بالمتلازمة الاستقلابية بدون السكري من النمط الثاني

2025-04-26 | المجلد السابع العدد الخامس – المجلد السابع | مقالات بحثية
صفاء عبد الهادي حوى | يوسف أحمد بركات | زينب حيدر العرفي

الملخص

خلفية البحث وهدفه: تشكل المتلازمة الاستقلابية MetS مجموعة من الاضطرابات الاستقلابية التي تتضمن ارتفاع غلوكوز الدم و/أو مقاومة الأنسولين واضطراب شحميات الدم والبدانة المركزية وارتفاع ضغط الدم. وهي سببٌ هامٌّ للمراضة والوفيات، ويُعتقد أن سببها يتضمن تفاعلاً معقداً بين الاستعداد الوراثي والعوامل البيئية، وأهمها مقاومة الأنسولين. ومن ناحية أخرى، الإنزيم المقوض للأنسولين IDE هو الإنزيم الرئيس الذي يقوض الأنسولين، وتشير الدراسات الحديثة إلى أن له وظائف مهمة ترتبط بآليات عمل الأنسولين واستتباب الغلوكوز والأنسولين؛ وبناء عليه، قد يكون IDE واصماً حيوياً مفيداً في هذه الحالات. تهدف هذه الدراسة إلى مقارنة مستويات IDE المصلية بين أفراد مصابين بالمتلازمة الاستقلابية دون السكري نمط 2 (مجموعة المرضى)، وأشخاص أصحاء (مجموعة الشاهد) لدى عينة من البالغين السوريين. ودراسة علاقة مستويات IDE مع مكونات المتلازمة الاستقلابية وبعض القياسات الأنتروبومترية (البشرية) والسريرية والالتهابية والاستقلابية.

مواد البحث وطرائقه: شملت الدراسة 93 شخصاً من البالغين موزعين على مجموعتين: 45 شواهد أصحاء و48 مرضى). خضع كل مشارك لأخذ القصة المرضية وقياس بعض المتثابتتات البشرية (الأنتروبومترية) والسريرية والبدانة والالتهاب والمتثابتات الاستقلابية.

النتائج: انخفضت مستويات IDE بشكل معتد به إحصائياً لدى المرضى مقارنة بالشواهد، وارتبطت سلبياً بالغلوكوز0.05 > P))

الاستنتاجات: يمكن أن يسهم الإنزيم المقوض للأنسولين في إمراضية المتلازمة الاستقلابية ويمكن أن تفيد مقايسته كواصم حيوي هام في هذه المتلازمة.


كلمات مفتاحية : المتلازمة الاستقلابية MetS، الإنزيم المقوض للأنسولين IDE، السكري نمط ثاني T2DM، مقاومة الأنسولين. Metabolic syndrome (MetS), insulin-degrading enzyme (IDE), type 2 diabetes mellitus (T2DM), insulin resistance.
المراجع :
  1. Krishnaveni, G., S. Wagle, and C. Yajnik, Intrauterine malnutrition and future risk of metabolic syndrome, in Metabolic Syndrome. 2024, Elsevier. p. 21-34.
  2. Satpathi, T., R. Unnikrishnan, and V. Mohan, Intervening at the stage of metabolic syndrome to prevent type 2 diabetes—Is it justified?, in Metabolic Syndrome. 2024, Elsevier. p. 35-43.
  3. Burrage, L. and A. Sinha, Understanding the complexities of metabolic syndrome in First Nations Australians, in Metabolic Syndrome. 2024, Elsevier. p. 93-103.
  4. Dong, S., et al., Metabolic syndrome and breast cancer: prevalence, treatment response, and prognosis. Frontiers in oncology, 2021. 11: p. 629666.
  5. Belhayara, M.I., et al., The metabolic syndrome: emerging novel insights regarding the relationship between the homeostasis model assessment of insulin resistance and other key predictive markers in young adults of Western Algeria. Nutrients, 2020. 12(3): p. 727.
  6. Jha, B.K., et al., Progress in Understanding Metabolic Syndrome and Knowledge of Its Complex Pathophysiology. Diabetology, 2023. 4(2): p. 134-159.
  7. Desroches, S. and B. Lamarche, The evolving definitions and increasing prevalence of the metabolic syndrome. Applied Physiology, Nutrition, and Metabolism, 2007. 32(1): p. 23-32.
  8. Tian, Y., G. Jing, and M. Zhang, Insulin-degrading enzyme: roles and pathways in ameliorating cognitive impairment associated with Alzheimer’s disease and diabetes. Ageing Research Reviews, 2023: p. 101999.
  9. Leissring, M.A., et al., Targeting insulin-degrading enzyme in insulin clearance. International journal of molecular sciences, 2021. 22(5): p. 2235.
  10. González-Casimiro, C.M., et al., Modulation of insulin sensitivity by insulin-degrading enzyme. Biomedicines, 2021. 9(1): p. 86.
  11. Pivovarova, O., et al., Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer’s disease? Annals of medicine, 2016. 48(8): p. 614-624.
  12. Lesire, L., et al., Insulin-Degrading Enzyme, an Under-Estimated Potential Target to Treat Cancer? Cells, 2022. 11(7): p. 1228.
  13. Binayi, F., et al., Sustained feeding of a diet high in fat resulted in a decline in the liver’s insulin-degrading enzyme levels in association with the induction of oxidative and endoplasmic reticulum stress in adult male rats: evaluation of 4-phenylbutyric acid. Heliyon, 2024.
  14. Najjar, S.M. and G. Perdomo, Hepatic insulin clearance: mechanism and physiology. Physiology, 2019. 34(3): p. 198-215.
  15. Organization, W.H., Waist circumference and waist-hip ratio: report of a WHO expert consultation, Geneva, 8-11 December 2008. 2011.
  16. Mohajan, D. and H.K. Mohajan, Body mass index (BMI) is a popular anthropometric tool to measure obesity among adults. Journal of Innovations in Medical Research, 2023. 2(4): p. 25-33.
  17. ELABSCIENCE. Human IDE(Insulin Degrading Enzyme) ELISA Kit. Available at: https://www.elabscience.com/p-human_ide_insulin_degrading_enzyme_elisa_kit-18196.html. 2023.
  18. Burtis, C.A. and E.R. Ashwood, Tietz textbook of clinical chemistry. Philadelphia, 1999. 1999: p. 1654-5.
  19. Rifai, N., P.S. Bachorik, and J.J. Albers, Lipids, lipoproteins and apolipoproteins. Tietz textbook of clinical chemistry, 1999. 3: p. 809-861.
  20. Kula, S.B., Evaluation of Enzymatic Sarcosine Oxidase Method and Comparison with Modified Kinetic Jaffe’s Reaction Analytical Method for Quantitative Analysis of Creatinine. 2022, JKUAT-COHES.
  21. Thomas, L., Clinical Laboratory Diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft Vol. 2. 1998.
  22. SEKISUI MEDICAL CO., L. NORUDIA Isulin. Retrieved from SEKISUI MEDICAL CO., LTD.

. 2017; Available from: international@sekisui.com.

  1. Hansson, L.-O. and L. Lindquist, C-reactive protein: its role in the diagnosis and follow-up of infectious diseases. Current Opinion in infectious diseases, 1997. 10(3): p. 196-201.
  2. Jagesh, R., et al., Impact of Adoption of Directly Measured Low-Density Lipoprotein-Cholesterol (LDL-C) on Targets of Lipid Control and Its Comparison With Friedewald Formula-Calculated LDL Cholesterol in People With Type-2 Diabetes Mellitus. Indian Journal of Clinical Cardiology, 2021. 2(3): p. 135-141.
  3. Wallace, T.M., J.C. Levy, and D.R. Matthews, Use and abuse of HOMA modeling. Diabetes care, 2004. 27(6): p. 1487-1495.
  4. Adams-Huet, B. and I. Jialal, Correlates of insulin resistance in nascent metabolic syndrome. Clinical Medicine Insights: Endocrinology and Diabetes, 2023. 16: p. 11795514231168279.
  5. Carmen Zaha, D., et al., Influence of inflammation and adipocyte biochemical markers on the components of metabolic syndrome. Experimental and therapeutic medicine, 2020. 20(1): p. 121-128.
  6. Maleki, A., et al., Metabolic syndrome and inflammatory biomarkers in adults: a population-based survey in Western region of Iran. International cardiovascular research journal, 2014. 8(4): p. 156.
  7. Masenga, S.K., et al., Mechanisms of oxidative stress in metabolic syndrome. International journal of molecular sciences, 2023. 24(9): p. 7898.
  8. Katsimardou, A., et al., Hypertension in metabolic syndrome: novel insights. Current hypertension reviews, 2020. 16(1): p. 12-18.
  9. Kotsis, V., et al., Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: part B: obesity-induced cardiovascular disease, early prevention strategies and future research directions. Journal of hypertension, 2018. 36(7): p. 1441-1455.
  10. Mancia, G., et al., The sympathetic nervous system and the metabolic syndrome. Journal of hypertension, 2007. 25(5): p. 909-920.
  11. Schlaich, M., et al., Metabolic syndrome: a sympathetic disease? The lancet Diabetes & endocrinology, 2015. 3(2): p. 148-157.
  12. Kotsis, V., et al., Mechanisms of obesity-induced hypertension. Hypertension research, 2010. 33(5): p. 386-393.
  13. Sofer, Y., et al., Insulin-degrading enzyme higher in subjects with metabolic syndrome. Endocrine, 2021. 71: p. 357-364.
  14. Lau, C.-H. and S. Muniandy, Novel adiponectin-resistin (AR) and insulin resistance (IR AR) indexes are useful integrated diagnostic biomarkers for insulin resistance, type 2 diabetes and metabolic syndrome: a case control study. Cardiovascular diabetology, 2011. 10: p. 1-18.
  15. Galicia-Garcia, U., et al., Pathophysiology of type 2 diabetes mellitus. International journal of molecular sciences, 2020. 21(17): p. 6275.
  16. Alexander, C.M., et al., NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes, 2003. 52(5): p. 1210-1214.
  17. Klop, B., J.W.F. Elte, and M. Castro Cabezas, Dyslipidemia in obesity: mechanisms and potential targets. Nutrients, 2013. 5(4): p. 1218-1240.
  18. Jung, U.J. and M.-S. Choi, Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International journal of molecular sciences, 2014. 15(4): p. 6184-6223.
  19. Welty, F.K., A. Alfaddagh, and T.K. Elajami, Targeting inflammation in metabolic syndrome. Translational research, 2016. 167(1): p. 257-280.
  20. Dallmeier, D., et al., Metabolic syndrome and inflammatory biomarkers: a community-based cross-sectional study at the Framingham Heart Study. Diabetology & metabolic syndrome, 2012. 4(1): p. 28.
  21. Festa, A., et al., Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation, 2000. 102(1): p. 42-47.
  22. De Feo, P., et al., Physiological increments in plasma insulin concentrations have selective and different effects on synthesis of hepatic proteins in normal humans. Diabetes, 1993. 42(7): p. 995-1002.
  23. Farris, W., et al., Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proceedings of the National Academy of Sciences, 2003. 100(7): p. 4162-4167.
  24. Abdul-Hay, S.O., et al., Deletion of insulin-degrading enzyme elicits antipodal, age-dependent effects on glucose and insulin tolerance. PloS one, 2011. 6(6): p. e20818.
  25. Villa-Pérez, P., et al., Liver-specific ablation of insulin-degrading enzyme causes hepatic insulin resistance and glucose intolerance, without affecting insulin clearance in mice. Metabolism, 2018. 88: p. 1-11.
  26. Sousa, L., et al., Insulin‐degrading enzyme: an ally against metabolic and neurodegenerative diseases. The Journal of pathology, 2021. 255(4): p. 346-361.
  27. Borges, D.O., et al., Loss of postprandial insulin clearance control by Insulin-degrading enzyme drives dysmetabolism traits. Metabolism, 2021. 118: p. 154735.
  28. Merino, B., et al., Hepatic insulin-degrading enzyme regulates glucose and insulin homeostasis in diet-induced obese mice. Metabolism, 2020. 113: p. 154352.