سقالة الببتيد هيدروجيل Puramatrix® تدعم عيوشية الخلايا الشحمية العائدة عن التمايز في المختبر

سقالة الببتيد هيدروجيل Puramatrix® تدعم عيوشية الخلايا الشحمية العائدة عن التمايز في المختبر

2021-07-01 | المجلد السادس العدد السابع - المجلد السادس | مقالات بحثية
محمد أبوشنب | محمد أسامة الجبان | عصام قاسم

الملخص

تُعزز السقالة الحيوية تسهيل التصاق وتكاثر الخلايا، بالإضافة إلى انتشار عوامل النمو والعناصر الغذائية، وبهذا تؤمن تكاثر وتمايز الخلايا الجذعية أثناء عملية التجدُّد النسيجي. ويُقدم ببتيد هيدروجيل Puramatrix® (PM) ذا الألياف النانوية والقوام الهلامي سقالة هلامية مُميزة لدعم تكاثر الخلايا وهو يوفر بيئة صغرية مماثلة للمطرس خارج الخلوي في سياق الهندسة النسيجية.

هدفت هذه الدراسة إلى تقييم عيوشية الخلايا الشحمية العائدة عن التمايز والمأخوذة من النسيج الشحمي للكلب ضمن سقالة الببتيد هيدروجيل المُصنّعة (Puramatrix®) (دراسة في المختبر).

عُزلت الخلايا الشحمية العائدة عن التمايز (Dedifferintiated Fat Cells) DFAT من النسيج الشحمي للكلب بالهضم بالكولاجيناز والتنبيذ اللاحق. واستنبتت خلايا الإمرار الثاني ضمن أطباق 96 حجرة. وبعد 24 ساعة، أُضيفت ثلاثة تراكيز مختلفة من سقالة PM (0.15، 0.25، 0.5 %) إلى الحجر التجريبية. واعتمدت فترتان لتحري عيوشية الخلايا ضمن السقالة: 48 ساعة و7 أيام. وجرى تقييم عيوشية خلايا DFAT ضمن سقالة PM بمقايسة MTT.

أظهرت النتائج عدم وجود فارق احصائي هام بين التراكيز الثلاثة لسقالة PM ومع المجموعة الشاهدة بعد استنبات الخلايا DFAT ضمن سقالة PM لمدة 48 ساعة (0.563 =P). من ناحية أخرى، حسنت تراكيز PM الثلاثة، بعد 7 أيام، من عيوشية خلايا DFAT بشكل يُعتد به، مقارنةً مع المجموعة الشاهدة (P<0.001). حتى أن تركيزي (PM (0.15، 0.25% حققا عيوشية خلايا DFAT، مقارنة بالتركيز 0.5% بعد 7 أيام من الاستنبات(P<0.05).


كلمات مفتاحية : مقايسة، عيوشية خلوية، خلايا شحمية عائدة عن التمايز، سقالة Puramatrix® scaffold
المراجع :

1- Chmilewsky F; Jeanneau C; Dejou J. & About I.

Sources of dentin-pulp regeneration signals and their modulation by the local microenvironment.

Journal of endodontics, 40(4), S19-S25, 2014.

2- Shieh SJ. & Vacanti JP.

State-of-the-art tissue engineering: from tissue engineering to organ building.

Surgery, 137, 1-7, 2005.

3- Stock UA. & Vacanti JP.

Tissue engineering: current state and prospects.

Annu Rev Med, 52, 443-451, 2001.

4- Knight MA. & Evans GR.

Tissue engineering: progress and challenges.

Plast Reconstr Surg, 114, 26E-37E, 2004.

5- Koh CJ. & Atala A.

Therapeutic cloning and tissue engineerin.

Curr Top Dev Biol, 60, 1-15, 2004.

6- Sugihara H; Funatsumaru S; Yonemitsu N; Miyabara S; Toda S. & Hikichi Y

A simple culture method of fat cells from mature fat tissue fragments.

Journal of Lipid Research, 30(12),87-1995,1989.

7- Matsumoto T; Kano K; Kondo D; Fukuda N; Iribe Y; Tanaka N. & Ryu J.

Mature adipocyte‐derived dedifferentiated fat cells exhibit multilineage potential.

Journal of cellular physiology, 215(1), 210-222, 2008.‏

8- Saler M; Caliogna L; Botta L; Benazzo F; Riva F; & Gastaldi G.

Hasc and DFAT multipotent stem cells for regenerative medicine: A comparison of their potential differentiation in vitro.

International journal of molecular sciences, 18(12), 2699, 2017.

9- Akita D; Kano K; Saito-Tamura Y; Mashimo T; Sato-Shionome M; Tsurumachi N. & Tsukimura N.

Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration.

Frontiers in physiology, 7, 50, 2016.

10-Shimizu M; Matsumoto T; Kikuta S; Ohtaki M; Kano K; Taniguchi H. & Tokuhashi Y.

Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model.

Journal of Orthopaedic Science, 23(4), 688-696, 2018.‏

11-Jumabay M; Matsumoto T; Yokoyama S. I; Kano K; Kusumi Y; Masuko T. & Fukuda N.

Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats.

Journal of molecular and cellular cardiology, 47(5), 565-575, 2009.‏

12-Lavik E. & Langer R.

Tissue engineering: current state and perspectives.

Applied microbiology and biotechnology, 65(1), 1-8, 2004.

13-Piva E; Silva A.F. & Nör J.E.

Functionalized scaffolds to control dental pulp stem cell fate.

Journal of endodontics, 40(4), S33-S40, 2014.

14-Holmes T.C.

Novel peptide-based biomaterial scaffolds for tissue engineering.

Trends in biotechnology, 20(1), 16-21, 2002.

15-Zhang S; Zhao X. & Spirio L.

PuraMatrix: self-assembling peptide nanofiber scaffolds.

Scaffolding in tissue engineering, 217-238, 2005.‏

16-Cavalcanti B.N; Zeitlin B.D. & Nör J.E.

A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells.

Dental Materials, 29(1), 97-102, 2013.‏

17-Rosa V; Zhang Z; Grande R.H.M. & Nör J.E.

Dental pulp tissue engineering in full-length human root canals.

Journal of dental research, 92(11), 970-975, 2013.‏

18-Kishimoto N; momota Y; hashimoto Y; omasa T. & kotani J.

Self-assembling peptide RADA16 as a scaffold in bone tissue engineering using dedifferentiated fat cells.

Journal of Oral Tissue Engineering, 8(3), 151-161, 2011.‏

19-Hamada K; Hirose M; Yamashita T. & Ohgushi H.

Spatial distribution of mineralized bone matrix produced by marrow mesenchymal stem cells in self‐assembling peptide hydrogel scaffold.

Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 84(1), 128-136, 2008.‏

20-Saleh Manal; Hajjar Jamal. & Rahmo Abdulkader.

Effect of selected insecticides on Sf9 insect cell line.

Leban. Sci. J, 14.2: 115, 2013.‏

21-Kobayashi Tsutomu et al.

Motility and growth of human bone-marrow mesenchymal stem cells during ex vivo expansion in autologous serum.

The Journal of Bone and Joint Surgery. British 87.10: 1426-1433, 2005.‏

22-Fernyhough M.E; Helterline D.L; Vierck J.L; Hausman G.J; Hill R.A. & Dodson M.V.

Dedifferentiation of mature adipocytes to form adipofibroblasts: more than just a possibility.

Adipocytes, 1(1), 17-24, 2005.‏

23-Fernyhough M.E; Hausman G.J; Guan L; Guridi M; Jiang Z; Dodson M.V. & Chen J.

Initial differences in lipid processing leading to pig-and beef-derived mature adipocyte dedifferentiation, 2009.

24-Kishimoto N; Momota Y; Hashimoto Y; Tatsumi S; Ando K; Omasa T. & Kotani J.

The osteoblastic differentiation ability of human dedifferentiated fat cells is higher than that of adipose stem cells from the buccal fat pad.

Clinical oral investigations, 18(8), 1893-1901, 2014.

25-Moradi F; Bahktiari M; Joghataei M.T; Nobakht M; Soleimani M; Hasanzadeh G. & Maleki F.BD

PuraMatrix peptide hydrogel as a culture system for human fetal Schwann cells in spinal cord regeneration.

Journal of neuroscience research, 90(12), 2335-2348, 2012.‏

26-Dissanayaka W.L; Hargreaves K.M; Jin L; Samaranayake L.P. & Zhang C.

The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo.

Tissue Engineering Part A, 21(3-4), 550-563, 2015.‏

27-Murata D; Yamasaki A; Matsuzaki S; Sunaga T; Fujiki M; Tokunaga S; & Misumi K.

Characteristics And Multipotency Of Equine dedifferentiated fat cells.

Journal of equine science, 27(2), 57-65, 2016.‏

28-Saler M; Caliogna L; Botta L; Benazzo F; Riva F. & Gastaldi G.

Hasc and dfat, multipotent stem cells for regenerative medicine: A comparison of their potential differentiation in vitro.

International journal of molecular sciences, 18(12), 2699, 2017.