استقصاء تأثير بعض الفلوروكينولونات على التبدلات النسيجية للشرايين والبنكرياس عند جرذان من النمط STZ-Induced Diabetic Wistar Rats

استقصاء تأثير بعض الفلوروكينولونات على التبدلات النسيجية للشرايين والبنكرياس عند جرذان من النمط STZ-Induced Diabetic Wistar Rats

2021-07-01 | المجلد السادس العدد السابع - المجلد السادس | مقالات بحثية
حسام غريب | محمد ياسر عبجي | لينا غبرو | عبد الناصر عمرين

الملخص

رغم التأثيرات الجانبية لزمرة الفلوروكينولونات على مخطط كهربية القلب، وعلى مستويات سكر الدم، إلا أنه قد تبين في أبحاث سابقة أهميتها على بعض الوظائف الشريانية سريرياً، ومخبرياً، وذلك من خلال تعزيزها لعمل قنوات البوتاسيوم الصغيرة الحساسة للكالسيوم SKCa. تعد مجمل هذه التأثيرات جديرة بالاهتمام، خاصة لدى السكريين.

تهدف هذه الدراسة إلى استقصاء تأثير المعالجة بكل من المركبين الفلوروكينولونين ( MoxifloxacinوLevofloxacin) على التبدلات النسيجية في الشرايين والبنكرياس لجرذان من النمط wistar. فبعد استحداث نمط شبيه بالنمط الثاني من السكري باستخدام المركب Streptozotocin (STZ)، وانتظار الإزمان (4 أشهر)، جرى تقسيم الجرذان إلى أربع مجموعات، مجموعة 1: عولجت بالـ Moxifloxacin (n=10)، مجموعة 2: عولجت بالـ Levofloxacin (n=10)، مجموعة 3: جرى اعتبارها شواهد سكرية (n=10)، مجموعة 4: اعتبرت شواهد لا سكرية (n=4).

قورنت مستويات انسولين البلازما، أوزان الجسم، مستويات غلوكوز الدم في أوقات مختلفة ولمدة 14 يوم أثناء حقن الفلوروكينولونات. لوحظت قدرة الفلوروكينولونات على خفض مستويات غلوكوز الدم. وكان هذا التأثير أكبر مع مجموعة Levofloxacin منها مع الـ Moxifloxacin، وترافق ذلك مع ارتفاع مستويات الإنسولين في مجموعة Levofloxacin أكثر من مجموعة Moxifloxacin، وفي كلا هاتين المجموعتين أكثر من مجموعة الشواهد السكرية، والمجموعة غير السكرية. أظهرت المقاطع النسيجية تنخر جزر لانغرهانس، وتخرب الخلايا البطانة الوعائية في المجموعات السكرية الثلاث، لكن تنخر البنكرياس كان أقل في مجموعة Levofloxacin، وكان الضرر البطاني اأقل في مجموعة Moxifloxacin.

وكاستنتاج، قد تتباين تأثيرات كل من المركبين Moxifloxacin، Levofloxacin على المقاطع النسيجية، فالـ Levofloxacin قد يؤخر تخرب جزر لانغرهانس، في حين قد يؤخر المركب Moxifloxacin الاختلاطات الوعائية السكرية. إلا إنه لابد من توخي الحيطة والحذر حين استخدام هذه المركبات لدى المرضى السكريين بمراقبة مستويات سكر الدم بعناية.


كلمات مفتاحية : الداء السكري ، قنوات البوتاسيوم الصغيرة الحساسة للكالسيوم، Moxifloxacin، Levofloxacin، الإزمان
المراجع :

1- World Health Organization, Geneva (2016). Global report on diabetes.

2- Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Man CD, Cobelli C, Cline GW, Shulman G, Waldhäusl W & Roden M (2004). Alterations in Postprandial Hepatic Glycogen Metabolism in Type 2 Diabetes. Diabetes, 53(12): 3048-3056.

3- Clemens KK, O’Regan N & Rhee JJ (2019). Diabetes Management in Older Adults With Chronic Kidney Disease. Curr Diab Rep. https://doi.org/10.1007/s11892-019-1128-3.

4- Sprague JE & Arbeláez AM (2011). Glucose Counterregulatory Responses to Hypoglycemia. Pediater Endocrinol Rev 9(1): 463-475.

5- Gharib HM, Abajy MY & Omaren A (2020). Investigating the effect of some fluoroquinolones on C-reactive protein levels and ACh-Induced blood pressure reduction deviations after aging of diabetes in STZ-Induced diabetic wistar rats.

https://doi.org/10.1016/j.heliyon.2020.e03812.

6- Aronson D & Edelman ER (2016). Coronary artery disease and diabetes mellitus. Heart Failure Clin., 12: 117–133.

7- Balouch GH, Shaikh S, Shah SZA, Devrajani BR, Rajpar N, Shaikh N & Devrajani T (2011). Silent ischaemia in patients with type 2 diabetes mellitus. World Appl Sci J., 13: 213-216.

8- Edwards G, Feletou M & Weston AH (2010). Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Eur J Physiol, 459: 863-879.

9- Brunton LL, Dandan RH & Knollmann BC (2018). Goodman and gilman,s the pharmacological basis of therapeutics. 13th edition.

10- Erkens JA, Klungel OH, Herings RM, Stolk RP, Spoelstra JA, Grobbee DE & Leufkens HG (2002). Use of fluoroquinolones is associated with a reduced risk of coronary heart disease in diabetes mellitus type 2 patient. Eur Heart J., 23: 1557-1579.

11- Absi M, Ghareeb H, Khalil A & Ruegg UT (2012). The Effect of Levofloxacin and Moxifloxacin on Cardiovascular Functions of Rats with Streptozotocin-Induced Diabetes. Diab & Vas Dis Res., 10(1): 65-71.

12- Tamarina NA, Wang Y, Mariotto L, Kuznetsov A, Bond C, Adelman J & Philipson LH (2003). Small-Conductance Calcium-Activated K+ Channels Are Expressed in Pancreatic Islets and Regulate Glucose Responses. Diabetes, 52(8): 2000-2006.

13- Düfer M, Neye Y, Hörth K, Krippeit-Drews P, Hennige A, Widmer H, McClafferty H, Shipston MJ, Häring HU, Ruth P, Drews G (2011). BK channels affect glucose homeostasis and cell viability of murine pancreatic beta cells. Diabetologia, 54(2): 423-432.

14- Zhou Y, Sun P, Wang T, Chen K, Zhu W & Wang H (2015). Inhibition of Calcium Influx Reduces Dysfunction and Apoptosis in Lipotoxic Pancreatic β-Cells via Regulation of Endoplasmic Reticulum Stress. PLoS ONE10(7).

15- Sonkusare S, Palade PT, Marsh JD, Telemaque S, Pesic A & Ruscha NJ (2006). Vascular calcium channels and high blood pressure: Pathophysiology and therapeutic implications. Vascul Pharmacol 44(3): 131-142.

16- Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR & Agrawal YO (2016). Challenges and Issues with Streptozotocin-Induced Diabetes – A Clinically Relevant Animal Model to Understand the Diabetes Pathogenesis and Evaluate Therapeutics. Chemico-Biol Int 244: 49-63.

17- Pramila K & JuliusA (2019). Antihyperglycemic, Antidyslipidemic and Antifibrotic effect of EGCG in STZ – High Fat Diet Induced DCM rats. Research J Pharm and Tech, 12(4).

18- Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, Belleville K, Beaudet N, Longpré JM, Carpentier AC, Geraldes P & Sarret P (2018). Combination of High-Fat/High-Fructose Diet and Low-Dose Streptozotocin to Model Long-Term Type-2 Diabetes Complications. Sci Rep 8: 424.

19- Qinna NA & Badwan AA (2015). Impact of streptozotocin on altering normal glucose 18 homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug Des 19 Devel 9: 2515–2525.

20- Sun M, Yokoyama M, Ishiwata T & Asano G (1998). Deposition of advanced glycation end products (AGE) and expression of the receptor for AGE in cardiovascular tissue of the diabetic rat. Int J Exp Pathol., 79(4): 207–222.

21-Gao L & Mann GE (2009). Vascular NAD (P)H oxidase activation in diabetes: a double-edged sword in redox signaling. Cardiovasc Res 82: 9-20.

22- Murillo O, Pachon ME, Euba G, Verdaguer R, Tubau F, Cabellos C, Cabo J, Gudiol F & Ariza J (2009). High doses of Levofloxacin vs Moxifloxacin against Staphylococcal Experimental Foreign-Body Infection: The Effect of Higher MIC-Related Pharmacokinetic Parameters on Efficacy. J Infect. 58: 220-226.

23- Sadariya KA, Gothi AK, Patel SD, Bhavsar SK & Thaker AM (2010). Safety of Moxifloxacin Following Repeated Intramuscular Administration in Wistar Rats. Veterinary World 3(10): 449-452.

24- Langtry HD & Lamb HM (1999). Levofloxacin. Its use in infections of the respiratory tract, skin, soft tissues and urinary tract. Drugs 56(3): 487-515.

25- Rawi SM, Mourad IM, Arafa NMS & Alazabi NI (2011). Effect of Ciprofloxacin and Levofloxacin on Some Oxidative Stress Parameters in Brain Regions of Male Albino Rats. African J Pharm Pharmacol., 5(16): 1888-1897.

26- Olsen KM, Gentry-Nielsen M, Yue M, Snitily MU, Preheim LC (2006). Effect of Ethanol on Fluoroquinolone Efficacy in a Rat Model of Pneumococcal Pneumonia. Antimicrobial Agents and Chemotherapy. 50: 210-219.

27- Braslasu ED, Bradatan C, Cornila M, Savulescu I, Cojmaleata R & Braslasu MC (2007). Normal blood glucose in white wistar rat and its changes following anesthesia. LUCRĂRI ṢTIINłIFICE MEDICINĂ VETERINARĂ. 120-123.

28- Chang JS, You YH, Park SY, Kim JW, Kim HS, Kun-Ho Yoon KH & Jae-Hyoung Cho JH (2013). Pattern of Stress-Induced Hyperglycemia according to Type of Diabetes: A Predator Stress Model. Diab Metab J 37: 475-483.

29- Bancroft JD & Cook HC (1994). Manual of histological techniques and their diagnostic application, second edition, edinburgh, churchill livingstone.

30- Jia G, Durante W & Sowers JR (2016). Endothelium-Derived Hyperpolarizing Factors: A Potential Therapeutic Target for Vascular Dysfunction in Obesity and Insulin Resistance. Diabetes 65(8): 2118-2120.

31- Girault A, Haelters JP, Potier-Cartereau M, Chantôme A, Jaffrès PA,Bougnoux P, Joulin V & Vandier C (2012). Targeting SKCa Channels in Cancer: Potential New Therapeutic Approaches. Curr Med Chem., 19: 697-713.

32- Robertson RP, Harmon J, Tran PO, Tanaka Y & Takahashi H (2003). Glucose Toxicity in β-Cells: Type 2 Diabetes, Good Radicals Gone Bad, and the Glutathione Connection. Diabetes 52(3): 581-587.

33- Marshall WJ & Bangert SK (2014). Clinical biochemistry metabolic and clinical aspects, third edition.

34- Kreider KE, Pereira K & Padilla BI (2017). Practical Approaches to Diagnosing, Treating and Preventing Hypoglycemia in Diabetes. Diabetes Ther 8(6): 1427-1435.

35- Wang HJ, Jin YX, Shen W, Neng J, Wu T, Li YJ & Fu ZW (2007). Low dose streptozotocin (STZ) combined with high energy intake can effectively induce type 2 diabetes through altering the related gene expression. Asia Pac J Clin Nutr 16: 412-417.

36- Brodeur MR, Bouvet C, Bouchard S, Moreau S, Leblond J, deBlois D & Moreau P (2014). Reduction of Advanced-Glycation End Products Levels and Inhibition of RAGE Signaling Decreases Rat Vascular Calcification Induced by Diabetes. PLoS One 9:e85922.

37- Zhao L, Wang Y, Ma X, Wang Y & Deng X (2013). Oxidative stress impairs IKCa- and SKCa-mediated vasodilatation in mesenteric arteries from diabetic rats. Nan Fang Yi Ke Da Xue Xue Bao 33(7): 939-944.

38- Senatus LM & Schmidt AM (2017). The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases. DOI:10.3389/fgene.2017.00187.

39- Sullivan MG (2018). Fluoroquinolones can cause fatal hypoglycemia, FDA warns. MDedge News.

40- Ishiwata Y, Itoga Y & Yasuhara M (2006). Effects of levofloxacin on serum glucose concentration in rats. Eur J Pharmacol 551: 168-174.

41- Kabbara WK, Ramadan WH, Rahbany P & Al-Natour S (2015). Evaluation of the appropriate use of commonly prescribed fluoroquinolones and the risk of dysglycemia. Ther Clin Risk Manag. 11: 639–647. doi:10.2147/TCRM.S81280.

42- Saraya A, Yokokura M, Gonoi T & Seino S (2004). Effects of fluoroquinolones on insulin secretion and β-cell ATP-sensitive K+ channels. Eur J Pharmacol., 497: 111-117.

43- Hori S., kizu J. & kawamura M. (2006). Effect of fluoroquinolones on plasma glucose levels in fasted and glucose-loaded mice. J Infect Chemother, 12: 109-111.

44- Gavin JR., Kubin R., Choudhri S., Kubitza D., Himmel H., Gross R. & Meyer JM (2004). Moxifloxacin and glucose homeostasis: a pooled-analysis of the evidence from clinical and postmarketing studies. Drug Saf., 27: 671-686.

45- Kelesidis T & Canseco E (2009). Levofloxacin-induced hypoglycemia: a rare but life-threatening side effect of a widely used antibiotic. Am J Med., 122: 3-4.

46- Berhe A., russom M., bahran F. & Hugos G. (2019). Ciprofloxacin and risk of hypoglycemia in non- diabetic patients. J Med Case Reports, 13: 142.

47- Watson MR, Ward CT, Prabhaker A, Fiza B & Moll V (2019). Successful Use of Octreotide Therapy for Refractory Levofloxacin-Induced Hypoglycemia: A Case Report and Literature Review. https://doi.org/10.1155/2019/3560608.

48- Parilo MA (2002). Gatifloxacin-Associated Hypoglycemia. J Pharm Technol., 18: 319-20.

49- Vallurupalli S, Huesmann G, Gregory J & Jakoby MG (2008). Levofloxacin-associated hypoglycaemia complicated by pontine myelinolysis and quadriplegia. Diabet Med., 25: 856-859.

50- Kapoor R, Blum D, Batra A, Varma N, Lakshmi K, Basak P & Jesmajian S (2012). Life-threatening hypoglycemia with moxifloxacin in a dialysis patient. J Clin Pharmacol., 52: 269-271.

51- Singal DK, Mittal A & Prakash A (2013). Recurrent episodes of hypoglycemia induced by moxifloxacin. Indian Journal of Pharmacology, 45(3): 301–302.

52- Mandavia DR, Virpariya MM, Patel TK & Tripathi CB (2012). Moxifloxacin-induced Hypoglycemia in a Non-diabetic Patient. Current Drug Safety, 7: 183-185.

53- Chou HW, Wang JL, Chang CH, Lee JJ, Shau WY & Lai MS (2013). Risk of severe dysglycemia among diabetic patients receiving levofloxacin, ciprofloxacin, or moxifloxacin in Taiwan. Clin Infect Dis., 57(7): 971-980.

54- Ishiwata Y & Yasuhara M (2010). Gatifloxacin-induced histamine release and hyperglycemia in rats. Euro J Pharmacol., 645: 192-197.

55- Ishiwata Y, Takahashi Y, Nagata M & Yasuhara M (2013). Effects of Moxifloxacin on Serum Glucose Concentrations in Rats. Biol Pharm Bull., 36(4): 686–690.

56- Nagai M, Nagata S, Yamagishi N, Satoh H & Furuhama K (2010). Clinicopathological aspect of dysglycemia in native and diabetic rats induced by the fluoroquinolone antibacterial gatifloxacin. Toxicology, 72: 567-537.

57- Yamada C, Nagashima K, Takahashi A, Ueno H, Kawasaki Y, Yamada Y, Seino Y & Inagaki N (2006). Gatifloxacin acutely stimulates insulin secretion and chronically suppresses insulin biosynthesis. Eur J Pharmacol., 553: 67-72.

58- Yabe K, Yamamoto Y, Suzuki T, Takada S & Mori K (2018). Functional and Morphological Characteristics of Pancreatic Islet Lesions Induced by Quinolone Antimicrobial Agent Gatifloxacin in Rats. Toxicologic Pathology, 47(1):019262331-880906. DOI: 10.1177/0192623318809062.

59- Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T & Donath MY (2005). Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab., 90: 501–506.

60- Nichols CG & Remedi MS (2012). The diabetic β-cell: hyperstimulated vs. hyperexcited. Diabetes Obes Metab., 14(03): 129-135.

61- Ghaly H, Kriete C, Sahin S, Pfloger A, Holzgrabe U, Zunkler BJ & Rustenbeck I (2009). The insulinotropic effect of fluoroquinolones. Biochem Pharmacol., 77:1040-1052. doi:10.1016/j.bcp. 2008.11. 019.

62- Gürpinar AN, Balkan E, Kiliç N, Kiriştioğlu I & Doğruyol H (1997). The effects of a fluoroquinolone on the growth and development of infants. J Int Med Res., 25(5): 302-306.

63- Jason M Sansone, Norman J. Wilsman, Ellen M. Leiferman, James Conway, Paul Hutson, Kenneth J. Noonan (2009). The effect of fluoroquinolone antibiotics on growing cartilage in the lamb model. J Pediatr Orthop., 29(2): 189-195.

64- De Magalhaes DA, Kume WT, Correita FS, Queiroz TS, Allebrandt Neto EW, Dos Santos MP, Kawashita NH & Franca SA (2019). High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal. An Acad Bras Cienc., 91(1): e20180314. http://dx.doi.org/10.1590/0001-3765201920180314.

65- Guo X, Wang Y, Wang K, Ji B, & Zhou F (2018). Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. J Zhejiang Univ Sci B., 19(7): 559–569.

66- Wulff H, Castle NA (2012). Therapeutic potential of KCa3.1 blockers: an overview of recent advances, and promising trends. Expert Rev Clin Pharmacol., 3(3): 385–396.

67- Jacobson D & Shyng SL (2019). Ion Channels of the Islets in Type 2 Diabetes. J Mol Biol., 432(5): 1326-1346.

68- More AS, Mishra JS, Hankins GDV, Yallampalli C & Sathishkumar K (2015). Enalapril Normalizes Endothelium-Derived Hyperpolarizing Factor-Mediated Relaxation in Mesenteric Artery of Adult Hypertensive Rats Prenatally Exposed to Testosterone. Biol Reprod., 92(6): 155.

69- Diabetes Care (2020). https://doi.org/10.2337/dc20-Sint.

70- Li-Mei Zhao, Yan Wang, Yong Yang, Rong Guo, Nan-Ping Wang, and Xiu-Ling Deng (2014). Metformin Restores Intermediate-Conductance Calcium-Activated K+ channel– and Small-Conductance Calcium-Activated K+ channel–Mediated Vasodilatation Impaired by Advanced Glycation End Products in Rat Mesenteric Artery. Mol Pharmacol., 86: 580–591.

71-       Fu X, Pan Y, Cao Q, Li B, Wang S, Du H, Duan N & Li X (2018). Metformin restores electrophysiology of small conductance calcium-activated potassium channels in the atrium of GK diabetic rats. BMC Cardiovasc Disord., 18(1): 63.