دراسة مرجعية لتقنية CRISPR-Cas، وتطبيقاتها في التعديل الجيني ومعالجة الأمراض الوراثية، والتقانة الحيوية الصناعية

دراسة مرجعية لتقنية CRISPR-Cas، وتطبيقاتها في التعديل الجيني ومعالجة الأمراض الوراثية، والتقانة الحيوية الصناعية

2021-07-01 | المجلد السادس العدد السابع - المجلد السادس | مقالات بحثية
ملاذ خنسه | محمد زهير مدلل

الملخص

تهدف هذه المراجعة إلى إلقاء نظرة على تقنية CRISPR-Cas، وتطبيقاتها في مجالات التعديل الجيني ومعالجة الأمراض الوراثية. بالإضافة إلى أن الدراسة تغطي استخدامات هذه التقانة في التقانة الحيوية الصناعية، سواء في تحسين إنتاج المستقلبات الأولية أو الثانوية من الجراثيم والخمائر، أو في تحسين المحاصيل الزراعية. تعد هذه التقنية ثورة في عالم التعديل الجيني، لما تتميز به من مرونة وقدرة على استهداف افتراضي لأي شدفة جين من أي كائن حي، مما يجعلها تمتلك مجالاً واسعاً للتطبيقات، من الطب والصيدلة، إلى الزراعة والصناعة. تركز هذه الدراسة على آلية عمل CRISPR- Cas، كنظام مناعي طبيعي لدى بدائيات النوى، وتطويعها في التعديل الجيني واستخدام هذا التعديل كأداة مفيدة في معالجة الأمراض الوراثية وتحسين السلالات الجرثومية والخمائرية والنباتية الصناعية.


كلمات مفتاحية : CRISPR، تعديل جيني، طفرة، مرض وراثي
المراجع :

-Abbott TR, Dhamdhere G, Liu Y et al. 2020. Development of CRISPR as prophylactic strategy to combat novel coronavirus and influenza. bioRxiv preprint.        Doi:

https://doi.org/10.1101/2020.03.13.991307

-Altenbuchner, J. 2016. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl. Environ. Microbiol., 82, 5421–5427.

–  Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR–provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712.

– Barrangou R, Marraffini LA. 2014. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell 54: 234–244.

–  Bialk, P., Rivera-Torres, N., Strouse, B. & Kmiec, E. 2015. Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems. Plos One 10, e0129308.

–  Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151: 2551–2561.

–  Bonamassa B, Hai L, Liu D. 2011. Hydrodynamic gene delivery and its applications in pharmaceutical research. Pharm Res 28:694–701.

–  Brazelton Jr VA, Zarecor S, Wright AD, Wang Y, Liu J, Chen K, Yang B, Lawrence-Dill CJ. 2015. A quick guide to CRISPR sgRNA design tools. GM Crops & Food, 6:266–276.

–  Briner AE, Barrangou R. 2016.Guide RNAs: A glimpse at the sequences that drive CRISPR–Cas systems. Cold Spring Harb Protoc doi: 10.1101/pdb .top090902.

–  Carte J, Pfister NT, Compton MM, Terns RM, Terns MP. 2010. Binding and cleavage of CRISPR RNA by Cas6. RNA 16: 2181–2188.

–  Cebrian-Serrano A, Davies B. 2017. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 28:247–261.

–  Chen B, Hu J, Almeida R, Liu H, Balakrishnan S, Covill-Cooke C, Lim WA, Huang B. 2016. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res 44:e75–e75.

–  Chen Y, Wang W, Tian XJ, Lefever DE, Taft DA, and Jianhua Xing. 2017. Rapid, modular, and cost-effective generation of donor DNA constructs for CRISPR-based gene knock-in. BioRxiv https://doi.org/10.1101/219618.

–  Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23: 1163–1171.

–  Cho S, Shin J, Cho BK. 2018. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering. Int. J. Mol. Sci. 19, 1089; doi:10.3390/ijms19041089.

–  Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R.2015. Increasing the efficiency of homology-directed repair for CRISPR– Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33: 543–548.

–  Cobb, R.E.; Wang, Y.; Zhao, H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 4, 723–728.

–  Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.

–  Cradick TJ, Fine EJ, Antico CJ, Bao G. 2013. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41: 9584–9592.

–  Cradick TJ, Qiu P, Lee CM, Fine EJ, Bao G. COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites. 2014. Mol Therapy Nucleic Acids 3:  e214;http://dx.doi.org/10.1038/mtna.2014.64.

–  Daya S, Berns KI. 2008. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21:583–593.

–  Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602–607.

–  Dever D, Bak RO, Reinisch A, Camarena G, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, Uchida N, Hendel A, Narla A, Majeti R, Weinberg KI, and Matthew H. Porteus. 2016. CRISPR/Cas9 Beta-globin Gene Targeting in Human Hematopoietic Stem Cells. Nature . 539(7629): 384–389. doi:10.1038/nature 20134.

–  DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR–Cas systems. Nucleic Acids Res 41: 4336–4343.

–  Ding Q, Strong A, Patel KM, et al. 2014. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 115:488–492.

–  Du D, Qi LS. 2016. CRISPR technology for genome activation and repression in mammalian cells. Cold Spring Harb Protoc doi: 10.1101/pdb.prot090175.

–  Farzadfard F, Perli SD, Lu TK. 2013. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol. 2:604–613.

–  Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL, Bzdrenga J, Koonin EV, Charpentier E. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR–Cas systems. Nucleic Acids Res 42: 2577–2590.

–   Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF. 2012. 3rd Targeted gene knockout by direct delivery of zincfinger nuclease proteins. Nat Methods.

–   Gaj T, Schaffer DV. 2016. AAV-mediated delivery of CRISPR/Cas systems for genome engineering in mammalian cells. Cold Spring Harb Protoc 11: doi:10.1101/pdb.prot086868.

– Gibson,D.G., Young,L., Chuang,R., Venter,J.C., Iii,C.A.H., Smith,H.O. and America,N. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods, 6, 12–16.

–  Gilbert LA, Larson MH, Morsut L et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 154:442–451.

–  Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007; 35(Web Server issue):W52-7; PMID:17537822; http://dx.doi. org/10.1093/nar/gkm360.

–  Guan Y, Ma Y, Li Q, et al. 2016. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 8:477–488.

–  Haft DH, Selengut J, Mongodin E F, Nelson K E. 2005. A guild of 45 CRISPR associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1: e60.

–  Hung SS, Chrysostomou V, Li F, et al. 2016. AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo. Invest Ophthalmol Vis Sci 57:3470–3476.

–  Hashimoto M, Takemoto T. (2015). Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9based genome editing. Sci Rep 5:11315.

–  Heckl D, Kowalczyk MS, Yudovich D, et al. 2014. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32:941–946.

–  Heler R, Marraffini LA, Bikard D. 2014. Adapting to new threats: The generation of memory by CRISPR–Cas immune systems. Mol Microbiol 93: 1–9.

–  Henao-Mejia J, Williams A, Rongvaux A, Stein J, Hughes C, Flavell RA. 2016. Generation of Genetically Modified Mice using the CRISPR-Cas9 Genome-Editing System. Cold Spring Harb Protoc 2: pdb.prot090704. doi:10.1101/pdb.prot090704.

–  Horii T, Arai Y, Yamazaki M, et al. 2014. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 4:4513.

–  Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987.Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169: 5429–5433.

– Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S and Gayatri Venkataraman. 2018. CRISPR for crops improvement: An update review. Frontiers in Plant Science. 9(985).

–  Jansen R, Embden JD, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43: 1565–1575.

–  Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat Biotechnol 31: 233–239.

–  Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.

–  Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343: 1247997.

–  Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul Ü, Wurm R, Wagner R, et al. 2011. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18: 529–536.

–  Kaur K, Tandon H, Gupta AK, Kumar M. 2015. CrisprGE: a central hub of CRISPR/Cas-based genome editing. Database: The J Biol Databases Curation 2015; bav055.

–  Kennedy EM, Kornepati AV, Goldstein M, et al. 2014. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 88:11965–11972.

–  Kim, D., Alptekin, B., and Budak, H. 2018. CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics. 18: 31–41. doi:10.1007/s10142-017-0572-x.

–   Kim, S.K.; Han, G.H.; Seong, W.; Kim, H.; Kim, S.W.; Lee, D.H.; Lee, S.G. 2016. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab. Eng. 38, 228–240.

–  Kowalski PS, Rudra A, Miao L, Anderson DG. 2019. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Molecular Therapy 27 (4): 710-720.

–  Lei Y, Lu L, Liu H-Y, Li S, Xing F, Chen LL. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 2014; 7(9):14946; PMID:24719468.

–   Li, Y.F.; Lin, Z.Q.; Huang, C.; Zhang, Y.; Wang, Z.W.; Tang, Y.J.; Chen, T.; Zhao, X.M. 2015. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng. 31, 13–21.

–  Liang X, Potter J, Kumar S, et al. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–453.

– Lieber MR. 2010. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway. Annu Rev Biochem. 79: 181–211. doi:10.1146/annurev.biochem.052308.093131.

–  Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, et al. 2014a. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 3: e186.

–  Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G. 2014b. CRISPR/Cas9 systems have offtarget activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42: 7473–7485.

–  Lino CA, Harper JC, Carney JP and Jerilyn A. Timlin. 2018. Delivering CRISPR: a review of the challenges and approaches. Drug Delivery 25:1234–1257 https://doi.org/10.1080/10717544.2018.1474964.

–  Liu T, Huang J. 2016. DNA End Resection: Facts and Mechanisms. Genomics Proteomics Bioinformatics. 14: 126-130.

–  Long C, Amoasii L, Mireault AA, et al. (2016). Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403.

–  Lu Z, Yang S, Yuan X et al. 2019. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis. Nucleic Acids Research. 47(7). doi: 10.1093/nar/gkz072.

–  Ma M, Ye AY, Zheng W, Kong L. 2013. A Guide RNA Sequence Design Platform for the CRISPR/Cas9 system for model organism genomes. Biomed Res Int. 2013:270805.

–  Ma, X., Zhu, Q., Chen, Y., and Liu, Y. G. (2016). CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol. Plant 9, 961–974. doi:10.1016/j.molp.2016.04.009.

–  Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. 2006. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1: 7.

–  Marchione M. 2020. Doctors altered a patient’s DNA to treat blindness with controversial gene editing tool. USA today.

–  Miller JB, Zhang S, Kos P, et al. 2017. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed Engl 56:1059–1063.

–  Miyaoka Y, Chan AH, Conklin BR. 2016. Detecting single-nucleotide substitutions induced by genome editing. Cold Spring Harb Protoc doi: 10.1101/pdb.top090845.

–  Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60: 174–182.

–  Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 2014; 42 (W1):W401-7; PMID:24861617.

–   Mougiakos, I.; Mohanraju, P.; Bosma, E.F.; Vrouwe, V.; Finger Bou, M.; Naduthodi, M.I.S.; Gussak, A.; Brinkman, R.B.L.; van Kranenburg, R.; van der Oost, J. 2017. Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat. Commun. 8, 1647.

–  Mout R, Ray M, Yesilbag Tonga G, et al. 2017. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11:2452–2458.

–  Naito Y, Hino K, Bono H, Ui-Tei K. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 2014; 31 (7):1120-3; PMID:25414360; http://dx.doi.org/ 10.1093/bioinformatics/btu743.

–  New England Biolabs. 2020. sgRNA Template Construction Strategies. www.neb.com/applications/genome-editing/sgrna-template-construction-for-cas9-gene-editing.

–  Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156: 935–949.

–  Nunez JK, Lee AS, Engelman A, Doudna JA. 2015. Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity. Nature 519: 193–198.

–  Okamoto S, Amaishi Y, Maki I, Enoki T, Mineno J. 2019. Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Nature Scientific Reports 9: 4811. https://doi.org/10.1038/s41598-019-41121-41124.

–  Papapetrou EP, Schambach A. 2016. Gene insertion into genomic safe harbors for human gene therapy. Mol Ther 24:678–684.

–   Plagens A, Richter H, Charpentier E, Randau L. 2015. DNA and RNA interference mechanisms by CRISPR–Cas surveillance complexes. FEMS Microbiol Rev 39: 442–463.

–  Prykhozhij SV, Rajan V, Gaston D, Berman JN. CRISPR Multi Targeter: A Web Tool to Find Common and Unique CRISPR Single Guide RNA Targets in a Set of Similar Sequences. PloS One 2015; 10(3): e0119372; PMID:25742428; http://dx.doi.org/10.1371/journal.pone.0119372.

– Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 1173–1183.

–  Qin W, Dion SL, Kutny PM, et al. 2015. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200:423–430.

–  Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186–191.

–  Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, et al. 2013. Double nicking by RNAguided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380–1389.

– Rath D, Amlinger L, Rath A, Lundgren M. 2015. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie 117: 119–128.

–  Ratner HK, Sampson TR, Weiss DS. 2016. Overview of CRISPR–Cas9 Biology. Cold Spring Harb Protoc; doi:10.1101/pdb.top088849.

–  Raveux A, Vandormael-Pournin S, Cohen-Tannoudji M. 2017. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci Rep 7:42661.

–  Rivera-Torres N, Banas K, Bialk P, Bloh KM, Kmiec EB. 2017. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides. PLoS ONE 12(1): e0169350. doi:10.1371/journal.pone.0169350.

–  Ryder SP. 2018. CRISPR babies: notes on a scandal. The CRISPR Journal. 1(6): 355-357.

–  Sander JD and Joung JK. 2014. CRISPR-Cas systems for genome editing, regulation and targeting. Nat Biotechnol. 32(4): 347–355. doi:10.1038/nbt.2842.

–  Shi S, Liang Y, Zhang MM et al. 2016. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng. 33:19–27.

–  Singh R, Kuscu C, Quinlan A, Qi Y, Adli M. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 2015; 43(18):e118.

–  Smith C, Ye Z, Cheng L. 2016. Protocol for genome editing in human pluripotent stem cells. Cold Spring Harb Protoc doi: 10.1101/pdb .prot090217.

–  Soldner F, Laganiere J, Cheng AW et al. 2011. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. J Cell 146(2): 318-331. http://dx.doi.org/10.1016/j.cell.2011.06.019.

–  Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL. CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool. PloS One 2015; 10(4):e0124633; PMID:25909470; http://dx.doi.org/10.1371/journal.pone.0124633.

–  Stovicek V, Borodina I, Forster J. 2015. CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun. 2: 13–22.

–  Stovicek V, Holkenbrink C, Borodina I. 2017. CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Research 17(5).                                                     doi: 10.1093/femsyr/fox030.

–  Sun W, Ji W, Hall JM, et al. 2015. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl 54:12029–120933.

–  Sung P, Klein H. 2006. Mechanism of Homologous Recombination: Mediators and Helicases Take on Regulatory Functions. Nature Reviews Molecular Cell Biology 7: 739-750.

–  Tabebordbar M, Zhu K, Cheng JKW, et al. 2016. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–411.

–  Teng KW, Ishitsuka Y, Ren P, et al. 2017. Labeling proteins inside living cells using external fluorophores for fluorescence microscopy. Elife 6:e25460.

–   Tong, Y.; Charusanti, P.; Zhang, L.; Weber, T.; Lee, S.Y. 2015. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4, 1020–1029.

– TransIT-X2 Manual. 2020. www.mirusbio.com/6000.

–  van der Oost J, Westra ER, Jackson RN, Wiedenheft B. 2014. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat Rev Microbiol 12: 479–492.

– Vanegas KG, Lehka BJ, Mortensen UH. 2017. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae. Microb Cell Fact. 16:25.

–  Vertex Pharmaceuticals Incorporated. 2019. CRISPR therapeutics and Vertex announce positive safety and efficacy data from first two patients treated with investigational CRISPR/Cas9 Gene Editing therapy CTX001® for severe Hemoglobinopathies. www.vrtx.com.

–  Waltz, E. (2018). With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol. 36: 6–7. doi:10.1038/nbt0118-6b.

–  Wang T, Lander ES, Sabatini DM. 2016. Large-scale single-guide RNA library construction and use for genetic screens. Cold Spring Harb Protoc doi: 10.1101/pdb.top086892.

–  Wang M, Zuris JA, Meng F, et al. 2016. Efficient delivery of genome editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA 113:2868–2873.

– Weninger A, Hatzl A-M, Schmid C et al. 2016. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J Biotechnol. 235: 139–149.

–  Westra ER, van Erp PB, Kunne T, Wong SP, Staals RH, Seegers CL, Bollen S, Jore MM, Semenova E, Severinov K, et al. 2012. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46: 595–605.

–  Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJJ, van der Oost J, Doudna JA, Nogales E. 2011. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477: 486– 489.

–  Wright JF. 2009. Transient Transfection Methods for Clinical Adeno-Associated Viral Vector Production. HUMAN GENE THERAPY 20:698–706.

–  Wu Y, Zhou H, Fan X, et al. 2015. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res 25:67–79.

–  Xu H, Xiao T, Chen CH, et al. 2015. Sequence determinants of improved CRISPR sgRNA design. Genome Res 25:1147–1157.

– Ye L, Wang J, Tan Y, Beyerf AI, Xie F, Muench MO, Kana YW. 2016. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1612075113.

–  Yin H, Xue W, Chen S, et al. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551–553.

–  Yin H, Song CQ, Dorkin JR, et al. 2016. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34:328–233.

–  Yu, C. et al. 2015. Small Molecules Enhance

CRISPR Genome Editing in Pluripotent Stem Cells. Cell Stem Cell 16, 142–147.

–  Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, Reimann J, Cannone G, Liu H, Albers SV, et al. 2012. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell 45: 303–313.

–  Zhang Y, Ge X, Yang F, Zhang L, Zheng J, Tan X, Jin Z-B, Qu J, Gu F. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Scientific Reports 2014; 4:5405; PMID:24956376.

–   Zhang, M.M.; Wong, F.T.; Wang, Y.; Luo, S.; Lim, Y.H.; Heng, E.; Yeo, W.L.; Cobb, R.E.; Enghiad, B.; Ang, E.L.; et al. 2017. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol.

–  Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom J.S, et al. 2015. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 82,632–643. doi:10.1111/tpj.12838.

–  Zhu LJ, Holmes BR, Aronin N, Brodsky MH. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PloS One 2014; 9(9):e108424; PMID:25247697; http://dx.doi.org/10.1371/journal. pone.0108424.

–  Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, et al. 2015. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun 6:7391.

–  Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML,  Joung JK, Chen ZY, Liu DR. 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33: 73-80.